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Introduction

This paper presents an algorithm for computing steady-state probabili-

ties and mean queue lengths and delay times for M/M/c queues with two priority

classes. Cobham [2] has computed mean delay times for multipriority M/M/c

queues with homogeneous service rates. Heyman [3] pointed out the need to

compute mean delay times where service rates for different priority classes

are unequal. The algorithm presented below computes expectations for a

system with two priority classes having heterogeneous rates; in addition,

it can compute steady state probabilities for individual states. However

it is doubtful whether this algorithm could be modified to a practical

algorithm for systems involving more than two priority classes. The

preemptive case is simpler than the nonpreemptive case; an algorithm for

it can be developed using ideas presented in this paper.

The general approach to this analysis is a computational method devel-

,>ped by Neuts [8). The simpler problem of single-server two priority

Markovian queues was solved by Miller [5]. The approach consists of parti-

tioning the full state space into blocks and discovering special structure

of the invariant probability vector in relation to these blocks. It is

assumed that the reader is familiar with [5,6,7,8].

In addition to solving the problem posed by Heyman, this algorithmic

approach is of interest because it explores a new and complicated application

of several ideas from the field of computational probability: quasi birth

and death processes, M/G/Il paradigms, and matrix-geometric invariant vectors.

Using single precision arithmetic the algorithm appears to work well

for low and moderate utilization factors, but there is some deterioration

in the calculations for high utilization. This application demonstrates

the need for developing good error analyses for this type of computation.

This application may be a good vehicle for developing some such analyses.
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State Space and Transition Matrices

Consider an M/M/c two priority nonpreemptive queueing system with

arrival rates 1 and X2 and service rates V and p42 * The state

space can be described as follows. Let xi,j,k be the state with i

first priority customers waiting, j second priority customers waiting,

k first priority customers in service and c-k second priority customers

in service, i, j > 0 , 0 < k < c. From them, define the blocks

Hi' j = {xi,j,k 0 < k < c} , ij > 0 .

Let x be the state with m customers in service of which n arem,n

first priority customers and no customers are waiting in queue,

0 < n < m < c . Then define theb locks

Hm m,n0 -< n < m O<m < c

(Note that Hc = HOO ) Thus, the state space is

S= c H) U(U jU HiJ)

Now consider the probabilistic transition rates for the non-

preemptive M/M/c two priority system on this state space. The

matrices of transition rates between the blocks defined above can be

denoted as

Ki : HI--4H , 0 < i < c-1

i: Hi-H , 1 < i < c

L : Hi- H~,j i'j > 0i i1 i-i - -

L2: H -H--. i i,j.> 02 , ,1 ij+l'

Mi: Hi- Hi. 1 j, i*>I, J>0

2 : 0, ' j > 1

-2-



T-440J

All transitions correspond to arrivals and departures thus there are no

transitions within individual blocks. Therefore the submatrices of the

transition rate matrix corresponding to transitions within a block are

all diagonal:

-D.: H. -40 H. , 0 < i < c. 1 2. - -

-D: H i,' i,j > 0C i j ij-

The transitiou scructure is depicted in Figure 1.

The matrix Ki  is (i+l) x (i+2) dimensional; (Ki)j,k  equals

A1  for k = j+l , A2  for k = j , and 0 otherwise (1 < J < i+l

1 < k < i+2) , The matrix J is (i+l) x i dimensional; (J )
i i j,k

equals (i-j+l)U 2  for k = j , (j-l)1.1  for k = j-1 , and 0 otherwise

(1 < j < i+l , 1 < k < i) . The matrices L, L M , and M2 are

(c+l) x (c+l) dimensional; L1  equals XlI ; L2  equals X21 ; (4)jk

equals (c-j+l)p2  for k- j+ , (j-l)p 1  for k - j, and 0 otherwise

(1 < i < c+1 , 1 < k < c+l) ;(M2)j,k equals (c-j+l)v2  for k = j

(0-1) for k = j-1 , and 0 otherwise (1 < j< c+l , I < k < c+l)

The matrix D.i is (i+l) x (i+l) dimensional; (Di)j, k  equals

(j-l)1 1 + (i-j+l)p 2 + A for k - j and 0 otherwise (1 < j < i+l ,

1 < k < i+l) .

The blocks H , 0 < m < c-1 , and H. . i,j > 0 , can bem - - l FJ -

combined into super blocks:

c-1 0
I-, = j. H i , PIi U t Hi~ i > 0.

I =

1=0 J=0

-3
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Figue1. Part tione stt spac (blk)adtnsin

Hscheme.
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The states in 11 are exactly those corresponding to the existence of

Idle servers. The states in I , i > 0 , are those with exactly i

first priority customers awaiting service. The matrices of transition

rates between and within these blocks can be denoted as

BO_: I I i~
BO1,: -

0

BAO: I. - ,i>
Bl 

0i+
B 0I -. 10

AI - > 
A T

A2 : 7i. -41i_ , i> i

2 i i > 1

These transitions are depicted in Figure 2. The above matrices of

transition rates can each be partitioned into submatrices corresponding

to transitions between the subblocks of I. , i > - 1 . These sub-
1-

matrices were defined earlier. The number of submatrices in one of these

matrices varies according to the number of blocks in the corresponding

superblocks. (B_ ,_l)j,k equals Kj_ 1  for k = j+l, - Dj_ 1  for

k = j , Jj-i for k = j-l , and 0 otherwise (I < j c , I < k < c)

(B_1,O)jk equals Kc_ 1  for (j,k) = (l,c) and 0 otherwise

(l < j < - , 1 < k < c) (B0 _l)j,k equals Jc for (j,k) = (c,l) and

0 otherwise ( < j < c , <k<) . (B0,o)j,k equals L2  for

k = j+l , - Dc for k = j , M 2 for k = j-1 , and 0 otherwise

(l < J < c 1 < k < co) (AO)jk equals L1  for k =j and 0

-5-
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B 1 0BO, 0 _1
Q-D B1 -1

A0  
i 

A

A0  
A 2

®A1

A0  3 I A2

A4 A2

Figure 2. Partitioned state space (superblocks) and

transition scheme.
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otherwise (1 < j < -, 1 < k < ) (AI)j,k equals L. for k = j+l

- D for k j and 0 otherwise (1 < j i < k < c) (A2 )j , k

equals M1  for k=j and 0 otherwise (1 j < c, 1 < k < c)

Using this block structure and notation, the transition rate matrix for

the M/M/c two-priority nonpreemptive queueing system is

B_1 1_ B -lO 0 0 0

B 0  B A 0 0

0 A2 A A 0
1 0

S 0 0 A A A(

Invariant Measures

The process described above is a quasi birth and death process

[4,81. Consequently its steady-state probability vector is of matrix-

geometric form [4,8]:

S- 0 0 0R 0
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The Matrix-Geometric Rate Matrix

The rate matrix, R , of the quasi birth and death process is the

minimal solution of

A0 + RA I + R2A2 = 0. (2)

Furthermore, from the block structure of the process and the interpretation

of the rate matrix [5,7,8], R must have the structure

R R R2 R R4

0 R 2 R 4

0 0 R0  R 1  R2

R= 0 0 0 R0  R1 (3)

0 0 0 0 R0

where each submatrix has dimension (c+l) x (c+l). Substituting (3) into

(2) gives a system of equations:

L - R0D + R 2 I = 0 (4)

i

R L -RD + E R.R.. = 0 (5)
i- 2 i c j=0 i-l

-8-

-- 8 -
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These can be solved numerically as follows. First consider (4). Let

Ll D= l D c 1= DM R 0 
ci1L' M1 ciD R1' DO;

then (4) becomes

R0  L I + R0 M (6)

which can be solved using the usual iterative approach useful for matrix-

geometric rate matrices [8]: Let

r 2 %\1 2 l
so 0 , S1 = L 1 0 I... Si+ 1 

= L ! + Si Mi,...

Then Si I R0 ' termwise. The usual procedure is to continue iterating

until the maximum termwise difference between successive iterates is

smaller than some 6 , e.g. C = 10 7

Now consider (5); it is equivalent to

R = Ri-IL2 + R l RR i-jMI + (RoRi + RiR0) MI 9 i > 1 (7)

For i = 1 , 1 can be found by using the above solution for R0  and

then using a similar iterative procedure which will converge monotonically

to R I . For i > 1, continue recursively, using the solutions for

R. , j < i , from previous steps and using the iterative procedure to

get R. The desired R.'s are1 1

R. = DRD >0
1 ci ic

Thus the rate matrix R can be computed up to any level of truncation.
In this study the computation of the R.'s was truncated when the

1

iterative procedure stopped in the first iteration, in which case the

value was set to 0

-9 -
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There is an internal accuracy check which can be used in the above

numerical computation. Let

R E R
i=0

From (6) and (7) it follows that

R 1 1 + R* L2 + (R*) M I . (8)

The usual iterative method can be used to solve (8) for R This matrix

can then be compared to the sum of the individual solutions Ri , i > 0

This check was performed and virtually no error detected.

The M/G/Il Paradigm

According to the theory of matrix-geometric invariant vectors, if

0 = T-Ps (9)

then

- =(- ' -0 ' 21 ' a2'"

where -i corresponds to the vector on the super block I. ' i > -1

and

-Ei+l = .R_ i > 0.

This can be used with (9) to temporarily reduce the problem of solving

(9) to consideration of

( 0 0 ) = 1 1 0 P 1 _ 1U 1o

-10-
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where

P I 0 B-'-1 B-IO0

i B0 B0, B0,0 + RA 2

is a matrix with negative diagonal entries, nonnegative off-diagonal

entries, and row sums equal to 0 ; thus it can be thought of as a

transition rate matrix for a Markov process on IIL)I 0 . Letting

CO = M2  CI= -Dc + R0M , C2 L 2 + RIM , C.i =R i M, i > 3,

gives

C 1 C2 C3  C4

1 C2 32  43

C C C C ...0 1 2 3

0 C0  C1  C 2  .

B +R ZU
0,0 2 0 0 CO  C I  . .

Note that this has the M/G/Il paradigm structure discussed by Lucantoni

and Neuts [4]. Following their approach, it will be easier to work with

an embedded Markov chain. Define the submatrices of transition probabili-

ties for this chain as

-ru

Ki = D.K"0 < i < c

C, D iC1 I
1 1 - - '

Dc + I,
1 ci

Ci = D'C , i = 0, 2, 3,

- 11- .4
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This is a Markov chain on

I UI U H 0 U0 = m 0,OJ

m- j=0

Each transition of this chain corresponds to a transition of the original

process. Each transition of the original process out of a state in

-1UI0  is also a transition for this chain. If the process made a

transition from I0  to I1 , then the chain will make a transition

from 10 to I0 , the target state being the first return state in

10 , Thus the chain can make transitions from states of 10 into them-

selves.

The following analysis uses ideas from Lucantoni and Neuts [4].

Consider the Markov chain PI_1 UI0  on this state space. Let C be

the (c+l) x (c+l) matrix of hitting probabilities of states of Ho,j

starting at H , j > 0 . G must satisfy

0, j+l

G= C
v=0

and can be found iteratively starting with an initial 0 matrix; see

[4]. Let V be the first passage probabilities of hitting states in

H ,j+I  starting from states in H0 ,j with H0,j  a taboo set; then

oo v x-2
V E C %

v=2

Let W be the first passage probabilities of hitting states in H0,j+ I

with H0,j a taboo set starting from states in 11 ,j+1 ; then

W E C G -

V=1

- 12 -
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Final.ly, let S be the matrix whose entries are the expected number of

visits to states in H0 ,j+ i  from states in HO j  before returning to

H , j ; then

S1  = vW- = V(I-W)
V)=0

Using the above relationships SI  can be computed.

Probabilities of Idle Servers

Now consider an invariant vector for the Markov chain with state
'V

space 1 1 U I0  and the Markov transition matrix P

'v
(z-1 , z O) (Z-l zO  PI_ 1U 0  (10)

Partition the vector over the blocks H , 0 < m < c-i , andm - -

H O,j , j>

(- )0 Z, -- 1,1 ....-- ,c-i -0, '0 , ... 0,2'

From the structure of this process and an i.pc;rtant property of taboo

probabilities (Theorem 1 of [5], or see Chung [1], p. 53), it follows

that

zO~ =z, S1
-0,1 -0Z,0 1I

This result applied to (10) gives

0 00
'V V 0
J 0 K

1 '1 '
J2 0 K2

(Z- z 0  Z -19 0  2 2( :-10 oo ) (-, . o,o )

0 1 0 Kc_ 1

i c C + Scl

-13-c 1 l
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ThM dimension of the above square matrix is (c+1) (c+2)/2. For a

moderate number of servers c , the invariant vector (z_, , z0,)

can be computed using existing numerical techniques. The corresponding

invariant vector for the process has component vectors

•= Zl Di I  0 < i < c-1
X-Y-,i ,li ' - -

-l

Y0,0 = -0,0 Dc

In order to get a normalizing constant to convert this into the invariant

probabilities, recall that the proportion of idle servers must equal
f'xl +

~.- 1- X 1 2)

where p is the utilization factor. Thus, let

-i
E C-1i-- 0 -c --l'i"
i=O

Then the invariant probabilities on I IU H0,0 can be computed:

Y- (l-p)/ , 0 < i < c-i

0,0 = !o o (l-p)/

Probabilities of States with Customers Waiting

Now it is possible to build the state space back up, computing the

invariant probabilities of additional states. In order to compute the

invariant probability vector (T-0,1 ' EO,2 ' ...) over

0-0,3

j=l

4

-14 -
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it is necessary to depart from the approach of Lucantoni and NCULS; 4

because C is singular. Instead, consider S, , the matrix whose
0

entries are the expected number of visits to states in P 0J from

states in 11 0j before hitting Y1 Ok 'k < j+i

S = Z C C (I-W)
v=i+l

This follows by a simple sample path argum~ent similar to the derivation

of S Iearlier. The invariant vector

for the Markov chain

PI1-l UI 0

must satisfy

z Oi+ zO' Sil- i>i

j=0

This is a special case of the fundamental result for taboo probabilities

(Theorem. 1 of [5] or see Chung [1], p.53). The invariant probabilities

for the process must therefore satisfy

-O'i+l E~ -0,j Dc Si+,l-j DC 1 4

These can be computed recursively, starting from iT which has alreaidv-0,0

been computed.

Finally 7Tij, i > 1 ,j > 0 ,can be computed using the

matrix-geometric structure:

T-i+l,j k= ni,k 'j-k

-15-
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Thus one can compute the invariant probability vector to any level of

t I L11Ca t i on 0 <"  i <1 I , 0 < j < J .

Sums and Means

By summing the above probabilities it is possible to get a sepr;.te

calculation of the probability of no idle servers (this can be used as a

consistency check on the numerical calculation) and the mean number of

each type of customer awaiting service (then Little's formula can be

applied to compute mean delay for each class).

E T. .et = I (I-R*) ' et (11)

i,j=0 -, -

qZ T. e- = R (I-R*)C (12)

i=l j=0 - -

oo et  L)( (0)-I S(0) t

q : j  Z i.j- = E 1 T - et (S ) -M (13)
Sj=l i=O 2 2

where et is a (c+l) dimensional column vector consisting of all I's

and

- = 0,0 (I-S(°))-

(0) 00 IV
S = D E Sk  Dc k=1 k c

ck= 1 k

Computational Experience

The algorithm described above has been programmed in single-precision

Fortran and run on GWU's IBM370/3031. Cases with c=5 were run. Sevnty

five different cases were run corresponding to all combinations of p = .2

.8 , A I -A .25 , .5 , 1,2,4, and l /2 .25 , .5 , 1,2,4. Execution

times lor LUmputing state probabilities and expectations varied from approx-

Imattl o 10 seconds per case with " .2 to approximately 60 seconds per case

with
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Various consistency checks were used in the computat i~on:l Drucediir,:

i) independent calculations of R* and E R. were compared; ii) Lie
1=0

row sums of G were compared with unity- iii) the row sums of

C + C + SI CO were compared with unity; iv) thLe total probability

computed was compared to unity; and v) moments were computed direct!v

from the state probabilities and compared with values computed from

equations (11) and (12). These consistency checks generally agreed to

5 or more digits.

The mean delay for cases with homogeneous service rates were

calculated using Cobham's [21 approach. The values agreed with those

computed by the above algorithm except in the case p = .8 where a

discrepancy appeared in the fourth digit. This case illustrates the

uee:i ror a more complete error analysis in this type of calculation.
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Relative Mean ys

(5 servers, .2 utilization)

.25 .50 1.0 2.0 4..0

.0003648 .00049b] .0006405 .00007681 .0008479
.25 .001947 .002613 .003333 .003922 .004441

.0004947 .0005728 .0006720 .0007704 .0008510
.50 .001251 .001453 .001705 .001948 .0021 34

.0007980 .0008211 .0008514 .0008841 .0009121
l/'2 1.0 .0009978 .001026 .001064 .001105 .001'41

.001454 .001394 .001308 .001209 .0011i8
2.0 .0009104 .0008738 .00b21.4 .0,007597 .0007021

.002846 .002665 .002384 .002020 .901650
4.0 .0008955 .0008431 .0007599 .0006490 .u005315

Table 1. Values of p1 WI and 2W2 for c=5 , p = .2

and X .25 , .5 , 1, 2, 4, and /if21 22

.25 , .5 , 1, 2, 4.
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Relative Mean Delays

(5 servers, .5 utilization)

A1I 2

.25 .50 1.0 2.0 4.0

.01488 .02195 .03082 .03892 .04414
.25 .1474 .2136 .2854 .3425 .3782

.01844 .02286 .02922 .03636 .04250
.50 .07843 .09859 .1258 .1540 .1765

.02898 .03128 .03476 .03911 .04'46

1i/I2 i.0 .05795 .06257 .06953 .07822 .08690

.05220 .05224 .05226 .05226 .05223
2.0 .05202 .05192 .05172 .05168 .05165

•i011 .09835 .09364 .08669 .07809
4.0 .05'J83 .04964 .04759 .04442 .04030

Table 2. Values of jI and 12W2 for c=5 . p = .5

1I 2 =.25 , .5 , 1, 2, 4, and -1i/p2

.25 .5 , 1, 2, 4
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T-440

Relative Mean Delays

(5 servers, .8 utilization)

.'15 .50 1.0 2.0 4."

.2113

.25 3.9591

.1159 .1726 .2487

.50 1.3541 1.8911 2.6118

.1319 .1513 .1846 .2405 .3052

1I /2 1.0 .6596 .7553 .9218 1.1956 1.5113

.2462 .2663 .2976

2.0 .5983 .6369 .6880

.4589

4.0 .5520

Table 3. Values of PW1  and p22 for c=5 , p-- .5 ,

A1/A 2 = .25 , .5 , 1,2, 4, and j 1 /pI2  .25 ,

.5 , :, 2, 4.
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To cope with the expanding technology, our society must
be assured of a continuing supply of rigorously trained
and educated engineers. The School of Engineering and
Applied Science is completely committed to this ob-
jictive.


